Serveur d'exploration sur les chloroplastes dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Growth at Elevated CO2 Requires Acclimation of the Respiratory Chain to Support Photosynthesis.

Identifieur interne : 000236 ( Main/Exploration ); précédent : 000235; suivant : 000237

Growth at Elevated CO2 Requires Acclimation of the Respiratory Chain to Support Photosynthesis.

Auteurs : Keshav Dahal [Canada] ; Greg C. Vanlerberghe [Canada]

Source :

RBID : pubmed:30042213

Descripteurs français

English descriptors

Abstract

Plants will experience an elevated atmospheric concentration of CO2 (ECO2) in the future. Growth of tobacco (Nicotiana tabacum) at ECO2 more than doubled the leaf protein amount of alternative oxidase (AOX), a non-energy-conserving component of mitochondrial respiration. To test the functional significance of this AOX increase, wild-type tobacco was compared with AOX knockdown and overexpression lines, following growth at ambient CO2 or ECO2 The ECO2-grown AOX knockdowns had a reduced capacity for triose phosphate use (TPU) during photosynthesis compared with the other plant lines. This TPU limitation of CO2 assimilation was associated with an increased accumulation of glucose-6-phosphate, sucrose, and starch in the leaves of the knockdowns. Under TPU-limiting conditions, the size of the proton gradient and proton motive force across the thylakoid membrane was enhanced in the knockdowns relative to the other plant lines, suggesting a restriction of chloroplast ATP synthase activity. This restriction was not due to a decline in ATP synthase (AtpB) protein amount. The knockdowns also displayed a photosystem stoichiometry adjustment at ECO2, which was absent in the other plant lines. Additional experiments showed that the way in which AOX supports photosynthesis at ECO2 is distinct from its previously described role in supporting photosynthesis during water deficit. The results are discussed in terms of how AOX contributes to TPU capacity and the maintenance of chloroplast ATP synthase activity at ECO2 Overall, the evidence suggests that AOX respiration is needed to maintain both the carbon and energy balance in photosynthetic tissues during growth at ECO2.

DOI: 10.1104/pp.18.00712
PubMed: 30042213
PubMed Central: PMC6130046


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Growth at Elevated CO
<sub>2</sub>
Requires Acclimation of the Respiratory Chain to Support Photosynthesis.</title>
<author>
<name sortKey="Dahal, Keshav" sort="Dahal, Keshav" uniqKey="Dahal K" first="Keshav" last="Dahal">Keshav Dahal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of Biological Sciences and Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario, Canada M1C1A4.</nlm:affiliation>
<country>Canada</country>
<wicri:regionArea>Departments of Biological Sciences and Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vanlerberghe, Greg C" sort="Vanlerberghe, Greg C" uniqKey="Vanlerberghe G" first="Greg C" last="Vanlerberghe">Greg C. Vanlerberghe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of Biological Sciences and Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario, Canada M1C1A4 gregv@utsc.utoronto.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>Departments of Biological Sciences and Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30042213</idno>
<idno type="pmid">30042213</idno>
<idno type="doi">10.1104/pp.18.00712</idno>
<idno type="pmc">PMC6130046</idno>
<idno type="wicri:Area/Main/Corpus">000239</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000239</idno>
<idno type="wicri:Area/Main/Curation">000239</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000239</idno>
<idno type="wicri:Area/Main/Exploration">000239</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Growth at Elevated CO
<sub>2</sub>
Requires Acclimation of the Respiratory Chain to Support Photosynthesis.</title>
<author>
<name sortKey="Dahal, Keshav" sort="Dahal, Keshav" uniqKey="Dahal K" first="Keshav" last="Dahal">Keshav Dahal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of Biological Sciences and Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario, Canada M1C1A4.</nlm:affiliation>
<country>Canada</country>
<wicri:regionArea>Departments of Biological Sciences and Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vanlerberghe, Greg C" sort="Vanlerberghe, Greg C" uniqKey="Vanlerberghe G" first="Greg C" last="Vanlerberghe">Greg C. Vanlerberghe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of Biological Sciences and Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario, Canada M1C1A4 gregv@utsc.utoronto.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>Departments of Biological Sciences and Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acclimatization (MeSH)</term>
<term>Carbon (metabolism)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Cell Respiration (MeSH)</term>
<term>Electron Transport (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Mitochondria (genetics)</term>
<term>Mitochondria (metabolism)</term>
<term>Mitochondrial Proteins (genetics)</term>
<term>Mitochondrial Proteins (metabolism)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Photosynthesis (MeSH)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Thylakoids (genetics)</term>
<term>Thylakoids (metabolism)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (growth & development)</term>
<term>Tobacco (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acclimatation (MeSH)</term>
<term>Carbone (métabolisme)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Mitochondries (génétique)</term>
<term>Mitochondries (métabolisme)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Photosynthèse (MeSH)</term>
<term>Protéines mitochondriales (génétique)</term>
<term>Protéines mitochondriales (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Respiration cellulaire (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Tabac (croissance et développement)</term>
<term>Tabac (génétique)</term>
<term>Tabac (métabolisme)</term>
<term>Thylacoïdes (génétique)</term>
<term>Thylacoïdes (métabolisme)</term>
<term>Transport d'électrons (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Mitochondrial Proteins</term>
<term>Oxidoreductases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Carbon Dioxide</term>
<term>Mitochondrial Proteins</term>
<term>Oxidoreductases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mitochondria</term>
<term>Plant Leaves</term>
<term>Thylakoids</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Leaves</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Mitochondries</term>
<term>Oxidoreductases</term>
<term>Protéines mitochondriales</term>
<term>Protéines végétales</term>
<term>Tabac</term>
<term>Thylacoïdes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
<term>Plant Leaves</term>
<term>Thylakoids</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carbone</term>
<term>Dioxyde de carbone</term>
<term>Feuilles de plante</term>
<term>Mitochondries</term>
<term>Oxidoreductases</term>
<term>Protéines mitochondriales</term>
<term>Protéines végétales</term>
<term>Tabac</term>
<term>Thylacoïdes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acclimatization</term>
<term>Cell Respiration</term>
<term>Electron Transport</term>
<term>Gene Expression Regulation, Plant</term>
<term>Photosynthesis</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acclimatation</term>
<term>Photosynthèse</term>
<term>Respiration cellulaire</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transport d'électrons</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants will experience an elevated atmospheric concentration of CO
<sub>2</sub>
(ECO
<sub>2</sub>
) in the future. Growth of tobacco (
<i>Nicotiana tabacum</i>
) at ECO
<sub>2</sub>
more than doubled the leaf protein amount of alternative oxidase (AOX), a non-energy-conserving component of mitochondrial respiration. To test the functional significance of this AOX increase, wild-type tobacco was compared with AOX knockdown and overexpression lines, following growth at ambient CO
<sub>2</sub>
or ECO
<sub>2</sub>
The ECO
<sub>2</sub>
-grown AOX knockdowns had a reduced capacity for triose phosphate use (TPU) during photosynthesis compared with the other plant lines. This TPU limitation of CO
<sub>2</sub>
assimilation was associated with an increased accumulation of glucose-6-phosphate, sucrose, and starch in the leaves of the knockdowns. Under TPU-limiting conditions, the size of the proton gradient and proton motive force across the thylakoid membrane was enhanced in the knockdowns relative to the other plant lines, suggesting a restriction of chloroplast ATP synthase activity. This restriction was not due to a decline in ATP synthase (AtpB) protein amount. The knockdowns also displayed a photosystem stoichiometry adjustment at ECO
<sub>2</sub>
, which was absent in the other plant lines. Additional experiments showed that the way in which AOX supports photosynthesis at ECO
<sub>2</sub>
is distinct from its previously described role in supporting photosynthesis during water deficit. The results are discussed in terms of how AOX contributes to TPU capacity and the maintenance of chloroplast ATP synthase activity at ECO
<sub>2</sub>
Overall, the evidence suggests that AOX respiration is needed to maintain both the carbon and energy balance in photosynthetic tissues during growth at ECO
<sub>2</sub>
.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30042213</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>03</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>178</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Growth at Elevated CO
<sub>2</sub>
Requires Acclimation of the Respiratory Chain to Support Photosynthesis.</ArticleTitle>
<Pagination>
<MedlinePgn>82-100</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.18.00712</ELocationID>
<Abstract>
<AbstractText>Plants will experience an elevated atmospheric concentration of CO
<sub>2</sub>
(ECO
<sub>2</sub>
) in the future. Growth of tobacco (
<i>Nicotiana tabacum</i>
) at ECO
<sub>2</sub>
more than doubled the leaf protein amount of alternative oxidase (AOX), a non-energy-conserving component of mitochondrial respiration. To test the functional significance of this AOX increase, wild-type tobacco was compared with AOX knockdown and overexpression lines, following growth at ambient CO
<sub>2</sub>
or ECO
<sub>2</sub>
The ECO
<sub>2</sub>
-grown AOX knockdowns had a reduced capacity for triose phosphate use (TPU) during photosynthesis compared with the other plant lines. This TPU limitation of CO
<sub>2</sub>
assimilation was associated with an increased accumulation of glucose-6-phosphate, sucrose, and starch in the leaves of the knockdowns. Under TPU-limiting conditions, the size of the proton gradient and proton motive force across the thylakoid membrane was enhanced in the knockdowns relative to the other plant lines, suggesting a restriction of chloroplast ATP synthase activity. This restriction was not due to a decline in ATP synthase (AtpB) protein amount. The knockdowns also displayed a photosystem stoichiometry adjustment at ECO
<sub>2</sub>
, which was absent in the other plant lines. Additional experiments showed that the way in which AOX supports photosynthesis at ECO
<sub>2</sub>
is distinct from its previously described role in supporting photosynthesis during water deficit. The results are discussed in terms of how AOX contributes to TPU capacity and the maintenance of chloroplast ATP synthase activity at ECO
<sub>2</sub>
Overall, the evidence suggests that AOX respiration is needed to maintain both the carbon and energy balance in photosynthetic tissues during growth at ECO
<sub>2</sub>
.</AbstractText>
<CopyrightInformation>© 2018 American Society of Plant Biologists. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dahal</LastName>
<ForeName>Keshav</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">0000-0002-0428-646X</Identifier>
<AffiliationInfo>
<Affiliation>Departments of Biological Sciences and Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario, Canada M1C1A4.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vanlerberghe</LastName>
<ForeName>Greg C</ForeName>
<Initials>GC</Initials>
<Identifier Source="ORCID">0000-0002-0685-4811</Identifier>
<AffiliationInfo>
<Affiliation>Departments of Biological Sciences and Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario, Canada M1C1A4 gregv@utsc.utoronto.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>07</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="C088813">alternative oxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000064" MajorTopicYN="N">Acclimatization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019069" MajorTopicYN="Y">Cell Respiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="Y">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020524" MajorTopicYN="N">Thylakoids</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>06</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>07</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>7</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>7</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30042213</ArticleId>
<ArticleId IdType="pii">pp.18.00712</ArticleId>
<ArticleId IdType="doi">10.1104/pp.18.00712</ArticleId>
<ArticleId IdType="pmc">PMC6130046</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ann Bot. 2004 Nov;94(5):647-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15355864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Mar;61(6):1067-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19587-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17148605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2011 Aug;142(4):339-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21401618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2009 Dec;137(4):473-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19671094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5539-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25870290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2016 Jul;57(7):1426-1431</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26903530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 Mar 26;14(4):6805-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23531539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Mar;32(3):209-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19021886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Jul;65(12):3133-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24799562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12789-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12192092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):70-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21078862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2012 Dec 19;367(1608):3466-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23148273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Aug;34(8):1373-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21486306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 May;62(9):2989-3000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21652533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Dec;216(4):986-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28967668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Nov;166(3):1560-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25204647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:561-591</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Jan;35(1):169-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21923758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jan;119(1):267-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3597-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19204289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Sep;139(1):466-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16126857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15585-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26644588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Apr;34(4):592-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21309792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Mar;12(3):125-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17293156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Nov;34(11):1890-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21707657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jun 09;8:998</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28649261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 1994 Mar;39(3):351-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24311129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Feb;31(2):235-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:609-639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Jul 20;68(16):4433-4453</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28981786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Aug;50(8):1449-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19567377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Apr;34(4):618-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21251020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1985 May;78(1):71-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Sep;30(9):1035-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17661745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Jul;52(360):1383-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Nov;33(11):1779-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20545877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2016 Mar;243(3):687-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26620947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Jun;15(3):308-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22244081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2013 Dec;149(4):461-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23582049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(10):2859-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19401412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:591-628</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Jan 1;68(3):657-671</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28011719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jan;134(1):520-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14701915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mitochondrion. 2008 Jan;8(1):87-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Oct;212(1):66-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27321208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:79-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21332361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2014 Feb;119(1-2):233-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23539362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Feb;176(2):1247-1261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28924017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2012 Sep;53(9):1627-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22848123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1999 Nov;210(1):104-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Mar;61(3):765-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19933320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2012 Jun;249 Suppl 2:S125-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22441589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2013 Dec 05;3:3433</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24305603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Oct;91(2):679-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jul;187(2):268-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20642724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Mar;1807(3):384-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21118673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Apr;37(4):886-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24112047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13317-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21784980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Jul 28;412(2):265-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9256232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2018 Mar;23(3):206-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29269217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Feb;128(2):760-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2016 Jul;157(3):367-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27087668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(15):4235-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19710178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Dec;33(12):2121-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20716069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Nov;37(11):2542-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24635671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2013;77(5):998-1007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23649264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2018 Apr 5;475(7):1225-1233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29622671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Feb;176(2):1423-1432</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29208641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2008 Aug;97(2):155-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18506594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Feb;63(4):1637-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22371324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Sep;30(9):1107-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17661750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Sep;145(1):49-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17660349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2014 Aug;81:44-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24560882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jan 13;7:2073</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28133462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Mar;30(3):258-270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17263773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jan;56(411):395-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15533877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):347-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21554328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jan;213(2):560-571</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27579773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Apr;89(4):1066-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):391-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Oct;208(2):382-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26032897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2016 Apr 29;67:81-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26927905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2008 May;49(5):825-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18388110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Nov;8(11):546-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14607100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Apr;214(1):34-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27891618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Nov;54(392):2393-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14512377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Mar;86(3):667-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(10):2435-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16766599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2011 May;108(1):15-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21400200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Feb 23;69(5):1183-1197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29281082</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Dahal, Keshav" sort="Dahal, Keshav" uniqKey="Dahal K" first="Keshav" last="Dahal">Keshav Dahal</name>
</noRegion>
<name sortKey="Vanlerberghe, Greg C" sort="Vanlerberghe, Greg C" uniqKey="Vanlerberghe G" first="Greg C" last="Vanlerberghe">Greg C. Vanlerberghe</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ChloroPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000236 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000236 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ChloroPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30042213
   |texte=   Growth at Elevated CO2 Requires Acclimation of the Respiratory Chain to Support Photosynthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30042213" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:07:36 2020. Site generation: Sat Nov 21 12:08:05 2020